论文标题

最大拆分​​子图和诱导子图表和相关类的有效枚举

Efficient enumeration of maximal split subgraphs and induced sub-cographs and related classes

论文作者

Brosse, Caroline, Lagoutte, Aurélie, Limouzy, Vincent, Mary, Arnaud, Pastor, Lucas

论文摘要

在本文中,我们对输入任意图$ g $的算法感兴趣,并列举输出所有(包含)最大的$ g $的最大“子图”,这些$ g $符合给定属性$π$。在本文中,我们研究了几种不同的属性$π$,并且正在考虑的子图(是否引起)的概念将从结果到另一个结果。 更确切地说,我们提出有效的算法,以列出给定输入图的所有最大拆分子图,亚签表和某些子类。此处介绍的所有算法以多项式延迟运行,此外,对于拆分图,仅需要多项式空间。为了开发用于最大拆分(边缘)子图的算法,我们在最大拆分子图和辅助图的最大独立集之间建立了两者。对于Cophaphs和某些子类,该算法依赖于Conte&Uno最近引入的“接近搜索”的框架。最后,我们考虑了扩展问题,该问题包括确定是否存在满足包含一组规定的顶点的属性$π$的最大感应子图,并避免了另一组顶点。我们证明,对于每个“有趣的”遗传性$π$,此问题都是NP填充。我们将硬度结果扩展到扩展问题的某些特定边缘版本。

In this paper, we are interested in algorithms that take in input an arbitrary graph $G$, and that enumerate in output all the (inclusion-wise) maximal "subgraphs" of $G$ which fulfil a given property $Π$. All over this paper, we study several different properties $Π$, and the notion of subgraph under consideration (induced or not) will vary from a result to another. More precisely, we present efficient algorithms to list all maximal split subgraphs, sub-cographs and some subclasses of cographs of a given input graph. All the algorithms presented here run in polynomial delay, and moreover for split graphs it only requires polynomial space. In order to develop an algorithm for maximal split (edge-)subgraphs, we establish a bijection between the maximal split subgraphs and the maximal independent sets of an auxiliary graph. For cographs and some subclasses , the algorithms rely on a framework recently introduced by Conte & Uno called Proximity Search. Finally we consider the extension problem, which consists in deciding if there exists a maximal induced subgraph satisfying a property $Π$ that contains a set of prescribed vertices and that avoids another set of vertices. We show that this problem is NP-complete for every "interesting" hereditary property $Π$. We extend the hardness result to some specific edge version of the extension problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源