论文标题

关于2D不可压缩的涡流的消失粘度极限

On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity

论文作者

Lopes, Helena J. Nussenzveig, Seis, Christian, Wiedemann, Emil

论文摘要

我们在二维圆环上不可压缩的Navier-Stokes方程在消失的粘度限制中表现出强烈的融合,因为仅假设有限的Euler方程的初始涡度在$ l^p $中in $ p $ in $ p> 1 $。这大大扩展了康斯坦丁,德里维斯和埃尔金迪的最新结果,他们在$ p = \ infty $的情况下证明了强烈的融合。我们的证明依赖于Diperna-Lions的经典重新归一化理论,非常简单。

We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier-Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in $L^p$ for some $p>1$. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case $p=\infty$. Our proof, which relies on the classical renormalization theory of DiPerna-Lions, is surprisingly simple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源