论文标题
库普曼分析流体流的理论框架,第2部分:从线性到非线性动力学
A theoretical framework for Koopman analyses of fluid flows, part 2: from linear to nonlinear dynamics
论文作者
论文摘要
通过将动力学从状态空间传输到其双重空间,可以获得动态的理论框架。结果,揭示了基于局部库普曼光谱理论的子组分析和不变子空间分解的线性结构。然而,非线性动力学与线性区别在于局部指数动力学和无限维度,其中后者是由于非线性相互作用引起的,并以递归增殖的koopman eigenspaces的特征。新框架为动态分析技术提供基础,例如全球稳定性分析(GSA)和动态模式分解(DMD)技术。此外,通过Mercer本征函数分解的线性结构衍生出众所周知的正交分解(POD)。 DMD技术将流过固定气缸的流动的HOPF分叉过程分解。在初级不稳定性阶段验证了库普曼分解与GSA的等效性。傅立叶模式,最低稳定的浮子模式及其在限制周期解决方案周围的高阶派生模式是当流量达到周期性时,是伯爵数量无限数量的Koopman模式的叠加。非线性调制对平均流量的影响是叠加单调的Koopman模式的饱和。非线性共振现象归因于无限数量的Koopman频谱的对齐。对上述非线性动态过程的分析依赖于第1部分中讨论的Koopman频谱的连续性和状态变量的属性。发现相干结构与状态不变模式有关。
A theoretic framework for dynamics is obtained by transferring dynamics from state space to its dual space. As a result, the linear structure where dynamics are analytically decomposed to subcomponents and invariant subspaces decomposition based on local Koopman spectral theory are revealed. However, nonlinear dynamics are distinguished from the linear by local exponential dynamics and infinite dimension, where the latter is due to nonlinear interaction and characterized by recursively proliferated Koopman eigenspaces. The new framework provides foundations for dynamic analysis techniques such as global stability analysis (GSA) and dynamic mode decomposition (DMD) technique. Additionally, linear structure via Mercer eigenfunction decomposition derives the well-known proper-orthogonal decomposition (POD). A Hopf bifurcation process of flow past fixed cylinder is decomposed numerically by the DMD technique. The equivalence of Koopman decomposition to the GSA is verified at the primary instability stage. The Fourier modes, the least stable Floquet modes, and their high-order derived modes around the limit cycle solution are found to be the superposition of countably infinite number of Koopman modes when the flows reach periodic. The nonlinear modulation effects on the mean flow is the saturation of the superimposed monotonic Koopman modes. The nonlinear resonance phenomenon is attributed to the alignment of infinite number of Koopman spectrums. The analysis of above nonlinear dynamic process relies on the properties of continuity of Koopman spectrums and state-invariance of Koopman modes discussed in part 1. The coherent structures are found related to the state-invariant modes.