论文标题

机器学习噪声量子电路

Machine learning of noise-resilient quantum circuits

论文作者

Cincio, Lukasz, Rudinger, Kenneth, Sarovar, Mohan, Coles, Patrick J.

论文摘要

降低噪声和减少对于从近期量子计算机中获得有用的答案至关重要。在这项工作中,我们提出了一个基于机器学习的一般框架,以减少量子硬件噪声对量子电路的影响。我们的方法称为噪声吸引电路学习(NACL),适用于旨在计算单一转换,准备一组量子状态或估计可观察到的多数状态的电路。给定一个任务和设备模型,可以捕获有关设备中Qubits噪声和连接性的信息,NACL输出了优化的电路,以在存在噪声的情况下完成此任务。它通过在电路深度和电路结构上最小化特定于任务的成本功能来做到这一点。为了证明NaCl,我们构建了在超导电路量子设备上从栅极组层析成像中得出的细粒噪声模型的弹性,用于包括量子状态重叠,量子傅立叶变换和W态制备的应用。

Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers. In this work, we present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits. Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state. Given a task and a device model that captures information about the noise and connectivity of qubits in a device, NACL outputs an optimized circuit to accomplish this task in the presence of noise. It does so by minimizing a task-specific cost function over circuit depths and circuit structures. To demonstrate NACL, we construct circuits resilient to a fine-grained noise model derived from gate set tomography on a superconducting-circuit quantum device, for applications including quantum state overlap, quantum Fourier transform, and W-state preparation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源