论文标题
通过卷积神经过程的元学习固定随机过程预测
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
论文作者
论文摘要
固定随机过程(SPS)是许多概率模型的关键组成部分,例如用于网格时空数据的模型。它们使潜在的物理现象的统计对称性能够杠杆化,从而有助于概括。在此类模型中的预测可以看作是从观察到的数据集到预测性SP的翻译均值图,强调平稳性与均衡性之间的亲密关系。在此基础上,我们提出了卷积神经过程(Convnp),该过程将神经过程(NPS)具有翻译等效性,并扩展了卷积有条件的NP,以允许预测分布中的依赖性。后者可以将回议部署在需要相干样本的设置中,例如汤普森采样或有条件的图像完成。此外,我们提出了一个新的最大可能性目标,以替换NP中的标准ELBO目标,从概念上讲,该目标简化了框架并从经验上提高了性能。我们证明了Convnps在1D回归,图像完成以及具有实际时空数据的各种任务上的强大性能和概括能力。
Stationary stochastic processes (SPs) are a key component of many probabilistic models, such as those for off-the-grid spatio-temporal data. They enable the statistical symmetry of underlying physical phenomena to be leveraged, thereby aiding generalization. Prediction in such models can be viewed as a translation equivariant map from observed data sets to predictive SPs, emphasizing the intimate relationship between stationarity and equivariance. Building on this, we propose the Convolutional Neural Process (ConvNP), which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution. The latter enables ConvNPs to be deployed in settings which require coherent samples, such as Thompson sampling or conditional image completion. Moreover, we propose a new maximum-likelihood objective to replace the standard ELBO objective in NPs, which conceptually simplifies the framework and empirically improves performance. We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D regression, image completion, and various tasks with real-world spatio-temporal data.