论文标题
寻找丢失的域概括
In Search of Lost Domain Generalization
论文作者
论文摘要
域概括算法的目的是在分布上很好地预测与训练中所见的分布不同。尽管存在无数的领域泛化算法,但实验条件下的不一致 - 数据集,体系结构和模型选择标准 - 使公平且现实的比较变得困难。在本文中,我们有兴趣了解在现实设置中有用的域泛化算法。作为第一步,我们意识到模型选择对于域概括任务是不平凡的。与先前的工作相反,我们认为没有模型选择策略的域泛化算法被视为不完整。接下来,我们实施了域域域的域概括,包括七个多域数据集,九个基线算法和三个模型选择标准。我们使用域床进行了广泛的实验,发现,当仔细实施经验风险最小化时,显示了所有数据集的最先进性能。展望未来,我们希望域床的释放以及研究人员的贡献将简化域泛化的可重现和严格的研究。
The goal of domain generalization algorithms is to predict well on distributions different from those seen during training. While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions -- datasets, architectures, and model selection criteria -- render fair and realistic comparisons difficult. In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings. As a first step, we realize that model selection is non-trivial for domain generalization tasks. Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete. Next, we implement DomainBed, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria. We conduct extensive experiments using DomainBed and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets. Looking forward, we hope that the release of DomainBed, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization.