论文标题

金字塔马尔可夫过程的新理论框架,用于区块链自私开采

A New Theoretical Framework of Pyramid Markov Processes for Blockchain Selfish Mining

论文作者

Li, Quan-Lin, Chang, Yan-Xia, Wu, Xiaole, Zhang, Guoqing

论文摘要

在本文中,我们提供了金字塔马尔可夫过程的新理论框架,以解决严格的数学环境下的区块链自私采矿的一些开放和基本问题。我们首先描述了一个更通用的区块链自私采矿模型,并具有两个障碍领先的竞争标准和新的经济激励机制。然后,我们建立了一个金字塔马尔可夫过程,并表明它是不可还原和正复发的,其固定概率向量是矩阵几何,具有明确表示的速率矩阵。此外,我们使用固定概率向量来研究许多孤儿块对浪费计算资源的影响。接下来,我们建立了一个金字塔马尔可夫奖励流程,分别研究了诚实和不诚实的采矿池的长期平均利润。作为副产品,我们构建了三个近似马尔可夫流程,并在Markov链和Eyal和Sirer(2014)的开创性工作中提供了一些新的有趣解释。请注意,金字塔马尔可夫(奖励)过程可以在区块链自私开采的研究中开辟新的途径。因此,我们希望本文在本文中发展的方法和结果揭示了区块链自私的采矿,以便可以潜在地开发一系列有希望的研究。

In this paper, we provide a new theoretical framework of pyramid Markov processes to solve some open and fundamental problems of blockchain selfish mining under a rigorous mathematical setting. We first describe a more general model of blockchain selfish mining with both a two-block leading competitive criterion and a new economic incentive mechanism. Then we establish a pyramid Markov process and show that it is irreducible and positive recurrent, and its stationary probability vector is matrix-geometric with an explicitly representable rate matrix. Also, we use the stationary probability vector to study the influence of many orphan blocks on the waste of computing resource. Next, we set up a pyramid Markov reward process to investigate the long-run average profits of the honest and dishonest mining pools, respectively. As a by-product, we build three approximative Markov processes and provide some new interesting interpretation on the Markov chain and the revenue analysis reported in the seminal work by Eyal and Sirer (2014). Note that the pyramid Markov (reward) processes can open up a new avenue in the study of blockchain selfish mining. Thus we hope that the methodology and results developed in this paper shed light on the blockchain selfish mining such that a series of promising research can be developed potentially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源