论文标题
针对无监督的框架间眼动校正的深层Q网络校正量
Dueling Deep Q-Network for Unsupervised Inter-frame Eye Movement Correction in Optical Coherence Tomography Volumes
论文作者
论文摘要
在视网膜的光学相干断层扫描(OCT)体积中,单个切片的顺序采集使这种模态易于运动伪影,相邻切片之间的未对准最为明显。 OCT体积中的任何失真都会偏向结构分析并影响纵向研究的结果。另一方面,存在这种成像方式的特征的斑点噪声,在采用传统的注册技术时会导致不准确。同样,缺乏明确的地面真相使监督的深入学习技术无法解决问题。在本文中,我们通过使用深度强化学习以无监督的方式纠正框架间运动来解决这些问题。具体来说,我们使用Dueling Deep Q-Network来训练人造代理,以找到最佳政策,即一系列动作,从而通过最大化奖励信号的总和来最大程度地改善对齐方式。我们首次使用基于强度的图像相似度指标的组合,而不是依靠转换参数的基础来指导奖励系统。此外,为了避免代理对斑点噪声的偏见,我们确保代理可以将视网膜层视为相互作用环境的一部分。为了进行定量评估,我们通过对单个B扫描进行2D刚性变换来模拟眼动伪像。对于归一化的相互信息和相关系数,所提出的模型平均达到0.985和0.914。我们还将模型与基于弹性强度的医学图像注册方法进行了比较,在我们的模型中,对于嘈杂和倾斜的体积,我们的模型都可以取得重大改进。
In optical coherence tomography (OCT) volumes of retina, the sequential acquisition of the individual slices makes this modality prone to motion artifacts, misalignments between adjacent slices being the most noticeable. Any distortion in OCT volumes can bias structural analysis and influence the outcome of longitudinal studies. On the other hand, presence of speckle noise that is characteristic of this imaging modality, leads to inaccuracies when traditional registration techniques are employed. Also, the lack of a well-defined ground truth makes supervised deep-learning techniques ill-posed to tackle the problem. In this paper, we tackle these issues by using deep reinforcement learning to correct inter-frame movements in an unsupervised manner. Specifically, we use dueling deep Q-network to train an artificial agent to find the optimal policy, i.e. a sequence of actions, that best improves the alignment by maximizing the sum of reward signals. Instead of relying on the ground-truth of transformation parameters to guide the rewarding system, for the first time, we use a combination of intensity based image similarity metrics. Further, to avoid the agent bias towards speckle noise, we ensure the agent can see retinal layers as part of the interacting environment. For quantitative evaluation, we simulate the eye movement artifacts by applying 2D rigid transformations on individual B-scans. The proposed model achieves an average of 0.985 and 0.914 for normalized mutual information and correlation coefficient, respectively. We also compare our model with elastix intensity based medical image registration approach, where significant improvement is achieved by our model for both noisy and denoised volumes.