论文标题

VoyTech团队:用户活动建模,以增强树木

Team voyTECH: User Activity Modeling with Boosting Trees

论文作者

Bayer, Immanuel, Zouzias, Anastasios

论文摘要

本文介绍了我们针对2020年ECML-PKDD聊天发现挑战赛的获胜解决方案。我们表明,通过使用增强树对用户活动进行建模,可以很好地预测Twitch用户是否已订阅通道。我们在高基数分类的背景下介绍了目标编码和增强树之间的连接,并发现在正确编码并与合适的优化方法结合时,建模用户活动更强大,而不是直接建模内容。

This paper describes our winning solution for the ECML-PKDD ChAT Discovery Challenge 2020. We show that whether or not a Twitch user has subscribed to a channel can be well predicted by modeling user activity with boosting trees. We introduce the connection between target-encodings and boosting trees in the context of high cardinality categoricals and find that modeling user activity is more powerful then direct modeling of content when encoded properly and combined with a suitable optimization approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源