论文标题
HDR-GAN:来自多曝光LDR图像的HDR图像重建
HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with Large Motions
论文作者
论文摘要
在动态场景中综合来自多个低动力范围(LDR)暴露的高动态范围(HDR)图像是具有挑战性的。前景物体的大动作引起了两个主要问题。一个是LDR图像中的严重错位。另一个是由于移动对象引起的过度/不饱和区域而导致的缺少内容,这可能不容易被多个LDR曝光所补偿。因此,它要求HDR生成模型能够正确融合LDR图像并在不引入工件的情况下恢复缺失的细节。为了解决这两个问题,我们在本文中提出了一种新型基于GAN的模型HDR-GAN,用于合成多暴露LDR图像的HDR图像。据我们所知,这项工作是第一种基于GAN的方法,用于融合HDR重建的多曝光LDR图像。通过融合对抗性学习,我们的方法能够在缺少内容的地区产生忠实的信息。此外,我们还提出了一个新颖的发电机网络,具有基于参考的残差合并块,用于对齐特征域中的大对象运动,以及一个深HDR监督方案,用于消除重建的HDR图像的伪像。实验结果表明,我们的模型在不同场景上的HDR方法上实现了最新的重建性能。
Synthesizing high dynamic range (HDR) images from multiple low-dynamic range (LDR) exposures in dynamic scenes is challenging. There are two major problems caused by the large motions of foreground objects. One is the severe misalignment among the LDR images. The other is the missing content due to the over-/under-saturated regions caused by the moving objects, which may not be easily compensated for by the multiple LDR exposures. Thus, it requires the HDR generation model to be able to properly fuse the LDR images and restore the missing details without introducing artifacts. To address these two problems, we propose in this paper a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images. To our best knowledge, this work is the first GAN-based approach for fusing multi-exposed LDR images for HDR reconstruction. By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content. In addition, we also propose a novel generator network, with a reference-based residual merging block for aligning large object motions in the feature domain, and a deep HDR supervision scheme for eliminating artifacts of the reconstructed HDR images. Experimental results demonstrate that our model achieves state-of-the-art reconstruction performance over the prior HDR methods on diverse scenes.