论文标题

从单层$ WS_ {2} $转移到NIR发射PBS-CDS量子点

Directed Energy Transfer from Monolayer $WS_{2}$ to NIR Emitting PbS-CdS Quantum Dots

论文作者

Tanoh, Arelo O. A, Gauriot, Nicolas, Delport, Géraud, Xiao, James, Pandya, Raj, Sung, Joo Young, Allardice, Jesse, Li, Zhaojun, Williams, Cyan A., Baldwin, Alan, Stranks, Samuel D., Rao, Akshay

论文摘要

二维(2D)过渡金属二核苷(TMDS)和无机半导体零维(0D)量子点(QDS)的异质结构提供独特的电荷和能量转移途径,这可能构成新型光电设备的基础。迄今为止,大多数人都集中在电荷转移和从QD到TMD的能源转移,即从0D到2d。在这里,我们介绍了从2D到0D材料的能源转移过程的研究,特别是探索从单层钨二硫化物($ WS_ {2} $)到接近红外(NIR)发射硫化物硫化物 - 硫化物硫化物(PBS-CDS)QDS的能量转移。 $ WS_ {2} $在可见区域的高吸收横截面结合了PBS QD系统的潜在高光致发光(PL)效率,使这是一个有趣的供体 - 受体系统,可以有效地将WS2用作天线和QD作为可调的QD作为可调的发射器,在这种情况下,在这种情况下,将其降低了降低的发射能量。我们使用光致发光激发(PLE)和PL显微镜研究了能量传输过程,并表明QD PL的58%是由于$ WS_ {2} $的能量传递而产生的。时间分解的光致发光(TRPL)显微镜研究表明,陷阱状态在$ WS_ {2} $中的固有PL淬灭的速度要快,因此可以有效地传递能量传递。我们的结果表明,QD可以用作可调和高PL效率发射器,以修改TMD的发射特性。这样的TMD/QD异质结构可以在发光技术,人造光收集系统中具有应用程序,或用于在各种逻辑和计算应用程序中读取TMD设备的状态

Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer unique charge and energy transfer pathways which could form the basis of novel optoelectronic devices. To date, most has focused on charge transfer and energy transfer from QDs to TMDs, i.e. from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D material, specifically exploring energy transfer from monolayer tungsten disulphide ($WS_{2}$) to near infrared (NIR) emitting lead sulphide-cadmium sulphide (PbS-CdS) QDs. The high absorption cross section of $WS_{2}$ in the visible region combined with the potentially high photoluminescence (PL) efficiency of PbS QD systems, make this an interesting donor-acceptor system that can effectively use the WS2 as an antenna and the QD as a tuneable emitter, in this case downshifting the emission energy over hundreds of meV. We study the energy transfer process using photoluminescence excitation (PLE) and PL microscopy, and show that 58% of the QD PL arises due to energy transfer from the $WS_{2}$. Time resolved photoluminescence (TRPL) microscopy studies show that the energy transfer process is faster than the intrinsic PL quenching by trap states in the $WS_{2}$, thus allowing for efficient energy transfer. Our results establish that QDs could be used as tuneable and high PL efficiency emitters to modify the emission properties of TMDs. Such TMD/QD heterostructures could have applications in light emitting technologies, artificial light harvesting systems or be used to read out the state of TMD devices optically in various logic and computing applications

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源