论文标题

利用无线渠道,以扩展和隐私的联合学习

Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated Learning

论文作者

Elgabli, Anis, Park, Jihong, Issaid, Chaouki Ben, Bennis, Mehdi

论文摘要

无线连通性在启用可扩展的联合学习(FL)方面具有重要作用,但是无线渠道为模型训练带来了挑战,在这种培训中,每个工人的模型更新都会使频道随机性触及,而多个工人的更新在有限的带宽下会引起大量干扰。为了应对这些挑战,在这项工作中,我们制定了一个新的约束优化问题,并提出了一个FL框架来利用无线通道扰动,并干扰了提高隐私,带宽效率和可扩展性。基于模拟传输和乘数的交替方向方法(ADMM)创建了所得算法联合ADMM(A-FADMM)。在A-FADMM中,所有工人都使用单个通道通过模拟传输将其模型更新上传到参数服务器(PS),在此期间,所有模型都会扰动并汇总了直播。这不仅可以节省通信带宽,而且还隐藏了每个工人的确切模型更新轨迹,包括任何窃听器,包括诚实但有趣的PS,从而保护了针对模型反转攻击的数据隐私。我们正式证明A FADMM在随着时间变化的通道下的凸功能的融合和隐私保证,并在嘈杂的通道和随机的非凸功能下,在收敛速度和可伸缩性以及通信带和稳定性和能源效率方面,在数值上显示了A-FADMM的有效性。

Wireless connectivity is instrumental in enabling scalable federated learning (FL), yet wireless channels bring challenges for model training, in which channel randomness perturbs each worker's model update while multiple workers' updates incur significant interference under limited bandwidth. To address these challenges, in this work we formulate a novel constrained optimization problem, and propose an FL framework harnessing wireless channel perturbations and interference for improving privacy, bandwidth-efficiency, and scalability. The resultant algorithm is coined analog federated ADMM (A-FADMM) based on analog transmissions and the alternating direction method of multipliers (ADMM). In A-FADMM, all workers upload their model updates to the parameter server (PS) using a single channel via analog transmissions, during which all models are perturbed and aggregated over-the-air. This not only saves communication bandwidth, but also hides each worker's exact model update trajectory from any eavesdropper including the honest-but-curious PS, thereby preserving data privacy against model inversion attacks. We formally prove the convergence and privacy guarantees of A-FADMM for convex functions under time-varying channels, and numerically show the effectiveness of A-FADMM under noisy channels and stochastic non-convex functions, in terms of convergence speed and scalability, as well as communication bandwidth and energy efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源