论文标题
在自旋交换碰撞下观察旋转式态状态一秒钟
Observing spin-squeezed states under spin-exchange collisions for a second
论文作者
论文摘要
使用芯片上的捕获原子时钟的平台,我们观察到超速rubidium原子中自旋键的超精细时钟状态的时间演变,以前无法访问的时间尺度最高为1 s。自旋程度在0.6 s后保持挤压,这与粒子损失施加的极限一致,并且与最先进的微波炉时钟中的典型Ramsey兼容。结果还显示出令人惊讶的自旋交换效应,该效应通过自旋和外部自由度之间的相关性扩大了基于腔的自旋测量。这些结果开辟了与量学相关的方案中挤压增强原子时钟的观点,并强调了自旋相互作用在旋转挤压的现实应用中的重要性。
Using the platform of a trapped-atom clock on a chip, we observe the time evolution of spin-squeezed hyperfine clock states in ultracold rubidium atoms on previously inaccessible timescales up to 1 s. The spin degree-of-freedom remains squeezed after 0.6 s, which is consistent with the limit imposed by particle loss and is compatible with typical Ramsey times in state-of-the-art microwave clocks. The results also reveal a surprising spin-exchange interaction effect that amplifies the cavity-based spin measurement via a correlation between spin and external degrees of freedom. These results open up perspectives for squeezing-enhanced atomic clocks in a metrologically relevant regime and highlight the importance of spin interactions in real-life applications of spin squeezing.