论文标题

二面体玛刺形式的量子差异

Quantum variance for dihedral Maass forms

论文作者

Huang, Bingrong, Lester, Stephen

论文摘要

我们建立了一个在$γ_0(d)\ backslash \ mathbb h $上,在某些固定$ d $的$γ_0(d)\ backslash \ mathbb h $上建立了二面maass形式的加权量子方差。正如物理文献所预测的那样,所得的二次形式与$γ_0(d)\ backslash \ mathbb h $上的地理流量的经典方差有关,但也包括对数量字段$ \ mathbb q(\ sqrt q(\ sqrt)的基本算法的敏感因素。

We establish an asymptotic formula for the weighted quantum variance of dihedral Maass forms on $Γ_0(D) \backslash \mathbb H$ in the large eigenvalue limit, for certain fixed $D$. As predicted in the physics literature, the resulting quadratic form is related to the classical variance of the geodesic flow on $Γ_0(D) \backslash \mathbb H$, but also includes factors that are sensitive to underlying arithmetic of the number field $\mathbb Q(\sqrt{D})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源