论文标题

第二种在数学物理学中的赖特功能

The Wright functions of the second kind in Mathematical Physics

论文作者

Mainardi, Francesco, Consiglio, Armando

论文摘要

在本文中,我们强调了第二种在数学物理学框架中第二种较高的先验赖特功能的重要性。我们首先从我们区分两种经典赖特功能的分析属性开始。然后,我们证明第二种赖特功能的相关性是时间折叠扩散波的基本解决方案。确实,我们认为这种方法是描述非高斯随机过程以及从亚散至过程到波传播的过渡。通过文本的各个部分和合适的附录,我们计划在此途径中探讨读者的第二类功能的应用。关键字:分数演算,赖特功能,绿色功能,扩散波方程,

In this review paper we stress the importance of the higher transcendental Wright functions of the second kind in the framework of Mathematical Physics.We first start with the analytical properties of the classical Wright functions of which we distinguish two kinds. We then justify the relevance of the Wright functions of the second kind as fundamental solutions of the time-fractional diffusion-wave equations. Indeed, we think that this approach is the most accessible point of view for describing non-Gaussian stochastic processes and the transition from sub-diffusion processes to wave propagation. Through the sections of the text and suitable appendices we plan to address the reader in this pathway towards the applications of the Wright functions of the second kind. Keywords: Fractional Calculus, Wright Functions, Green's Functions, Diffusion-Wave Equation,

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源