论文标题
CT图像中COVID-19分割的基于一致性的弱监督学习方法
A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images
论文作者
论文摘要
2019年冠状病毒疾病(Covid-19)在世界范围内积极传播,导致生存危机。因此,具有自动检测到层析成像(CT)图像中COVID-19的系统可以帮助量化疾病的严重程度。不幸的是,标记胸部CT扫描需要重要的领域专业知识,时间和精力。我们仅通过需要点注释来解决这些标记挑战,这是CT图像上每个受感染区域的单个像素。该标签方案允许注释者在可能受感染的区域中标记一个像素,仅需1-3秒,而不是10-15秒以分段一个区域。通常,分割模型使用这些标签上的跨凝结损失函数对点级注释进行训练。但是,这些模型通常会遭受低精度。因此,我们提出了一个基于一致性的(CB)损耗函数,该函数鼓励输出预测与输入图像的空间转换一致。 3个开源COVID-19数据集的实验表明,此损失函数比传统的点级损失函数可显着改善,并且几乎与通过较少人为努力训练的模型的性能相匹配。代码可在:\ url {https://github.com/issamlaradji/covid19_weak_supervision}中获得。
Coronavirus Disease 2019 (COVID-19) has spread aggressively across the world causing an existential health crisis. Thus, having a system that automatically detects COVID-19 in tomography (CT) images can assist in quantifying the severity of the illness. Unfortunately, labelling chest CT scans requires significant domain expertise, time, and effort. We address these labelling challenges by only requiring point annotations, a single pixel for each infected region on a CT image. This labeling scheme allows annotators to label a pixel in a likely infected region, only taking 1-3 seconds, as opposed to 10-15 seconds to segment a region. Conventionally, segmentation models train on point-level annotations using the cross-entropy loss function on these labels. However, these models often suffer from low precision. Thus, we propose a consistency-based (CB) loss function that encourages the output predictions to be consistent with spatial transformations of the input images. The experiments on 3 open-source COVID-19 datasets show that this loss function yields significant improvement over conventional point-level loss functions and almost matches the performance of models trained with full supervision with much less human effort. Code is available at: \url{https://github.com/IssamLaradji/covid19_weak_supervision}.