论文标题
某些非自由行动的几乎有限和同源
Almost finiteness and homology of certain non-free actions
论文作者
论文摘要
我们表明,Cantor最小$ \ Mathbb {Z} \ rtimes \ Mathbb {Z} _2 $ - 系统,基本上免费的Amenable Odometer几乎是有限的。我们还计算了Cantor最小$ \ Mathbb {Z} \ rtimes \ Mathbb {z} _2 $ - 系统的同源组,并证明相关的转换groupoids在操作是免费的时就满足了HK猜想。
We show that Cantor minimal $\mathbb{Z}\rtimes\mathbb{Z}_2$-systems and essentially free amenable odometers are almost finite. We also compute the homology groups of Cantor minimal $\mathbb{Z}\rtimes\mathbb{Z}_2$-systems and show that the associated transformation groupoids satisfy the HK conjecture if and only if the action is free.