论文标题

一般量子高斯可观察的结构

The structure of general quantum Gaussian observable

论文作者

Holevo, A. S.

论文摘要

建立了结构定理,该结构表明,任意多模式的玻色粒高斯可观察可观察到的组合是四种基本情况的组合,其物理原型是同型和异性疾病,无声或无声或嘈杂,量子的测量值。该证明是根据特征功能和概率运算符值措施(POVM)的密度来确定高斯可观察的描述之间的联系,并且与choi-jamiolkowski形式的波斯型高斯通道的处理相似。一路上,我们给出了``最经济的'',从量子杂质的最小程度上讲,构建了高斯将军可观察到的Naimark扩展。还表明,高斯POVM在且仅当其噪声协方差矩阵是非排定的时,相对于Lebesgue度量,具有限制了操作员值的密度。

The structure theorem is established which shows that an arbitrary multi-mode bosonic Gaussian observable can be represented as a combination of four basic cases, the physical prototypes of which are homodyne and heterodyne, noiseless or noisy, measurements in quantum optics. The proof establishes connection between the description of Gaussian observable in terms of the characteristic function and in terms of density of the probability operator-valued measure (POVM) and has remarkable parallels with treatment of bosonic Gaussian channels in terms of their Choi-Jamiolkowski form. Along the way we give the ``most economical'', in the sense of minimal dimensions of the quantum ancilla, construction of the Naimark extension of a general Gaussian observable. It is also shown that the Gaussian POVM has bounded operator-valued density with respect to the Lebesgue measure if and only if its noise covariance matrix is nondegenerate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源