论文标题

随机几何图的拓扑与光谱特性

Topological versus spectral properties of random geometric graphs

论文作者

Aguilar-Sanchez, R., Mendez-Bermudez, J. A., Rodrigues, Francisco A., Sigarreta, Jose M.

论文摘要

在这项工作中,我们对随机几何图(RGGS)的拓扑和光谱特性进行详细的统计分析;用于研究嵌入二维空间中的复杂系统的结构和动力学的图模型。 rggs,$ g(n,\ ell)$,由$ n $顶点统一和独立分布在单位方形上,如果它们的欧几里得距离较小或等于连接半径$ \ ell \ in [0,\ sqrt {2}] $。为了评估RGGS的拓扑特性,我们选择了两个著名的拓扑指数,分别是randić索引$ r(g)$和谐波指数$ h(g)$。尽管我们通过使用随机矩阵理论测量方法来表征相应随机加权邻接矩阵的光谱和特征向量性质:连续特征值间距,反向参与比,信息或shannon熵$ s(g)$之间的比率。首先,我们回顾RGG上平均度量,拓扑和光谱的缩放属性。然后我们证明:(i)平均尺度索引,$ \ weft \ langle r(g)\ right \ rangle $和$ \ weft \ langle h(g)\ rangle \ rangle $,与非分离的vertices $ \ weft \ weft \ langle v _ $ \ $ pry(g)的平均数量高度相关(ii)令人惊讶的是,平均的 - 标准的香农熵$ \ left \ langle s(g)\ right \ rangle $也与$ \ left \ left \ langle v_ \ times(g)\ right \ rangle $高度相关。因此,我们建议可以通过计算拓扑指数来对RGG的特征向量性质进行非常可靠的预测。

In this work we perform a detailed statistical analysis of topological and spectral properties of random geometric graphs (RGGs); a graph model used to study the structure and dynamics of complex systems embedded in a two dimensional space. RGGs, $G(n,\ell)$, consist of $n$ vertices uniformly and independently distributed on the unit square, where two vertices are connected by an edge if their Euclidian distance is less or equal than the connection radius $\ell \in [0,\sqrt{2}]$. To evaluate the topological properties of RGGs we chose two well-known topological indices, the Randić index $R(G)$ and the harmonic index $H(G)$. While we characterize the spectral and eigenvector properties of the corresponding randomly-weighted adjacency matrices by the use of random matrix theory measures: the ratio between consecutive eigenvalue spacings, the inverse participation ratios and the information or Shannon entropies $S(G)$. First, we review the scaling properties of the averaged measures, topological and spectral, on RGGs. Then we show that: (i) the averaged--scaled indices, $\left\langle R(G) \right\rangle$ and $\left\langle H(G) \right\rangle$, are highly correlated with the average number of non-isolated vertices $\left\langle V_\times(G) \right\rangle$; and (ii) surprisingly, the averaged--scaled Shannon entropy $\left\langle S(G) \right\rangle$ is also highly correlated with $\left\langle V_\times(G) \right\rangle$. Therefore, we suggest that very reliable predictions of eigenvector properties of RGGs could be made by computing topological indices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源