论文标题
拓扑和同义理论的主题
Topics in Topology and Homotopy Theory
论文作者
论文摘要
这本书是总体和代数拓扑的某些主题的描述。这是其中一些所采用的内容的样本,而不是列出每一章的概述:1)nil牛及其在同型理论中的作用。 2)布斯菲尔德关于空间和光谱的本地化理论。 3)同质限制和colimits及其应用。 4)James Construction,对称产品和Dold $ - $ THOM定理。 5)在三角形类别的环境中,布朗和亚当斯的性能6)oprads和5月的$ - $ - $ thomason定理无限循环太空机器的独特性。 7)Quillen的Plus结构和定理A和B。 8)霍普金斯的稳定同义理论的全球图片。 9)模型类别,联结类别和Waldhausen类别。 10)Dugundji扩展定理及其后果。
This book is an account of certain topics in general and algebraic topology. Instead of laying out a synopsis of each chapter, here is a sample of some of what is taken up: 1) Nilpotency and its role in homotopy theory. 2) Bousfield's theory of the localization of spaces and spectra. 3) Homotopy limits and colimits and their applications. 4) The James construction, symmetric products, and the Dold$-$Thom theorem. 5) Brown and Adams representability in the setting of triangulated categories 6) Operads and the May$-$Thomason theorem on the uniqueness of infinite loop space machines. 7) The plus construction and theorems A and B of Quillen. 8) Hopkins' global picture of stable homotopy theory. 9) Model categories, cofibration categories, and Waldhausen categories. 10) The Dugundji extension theorem and its consequences.