论文标题

非线性磁schrödinger方程的部分数据逆问题

Partial Data Inverse Problems for Nonlinear Magnetic Schrödinger Equations

论文作者

Lai, Ru-Yu, Zhou, Ting

论文摘要

我们证明,在$ \ m athbb {r}^n,n \ geq2 $中以限制域边界的一部分测量的dirichlet到neumann地图的知识可以在非线性磁性schrödinger方程中唯一地确定矢量价值磁性电位和标质电位的scalr electry电位,并且是非元素的。

We prove that the knowledge of the Dirichlet-to-Neumann map, measured on a part of the boundary of a bounded domain in $\mathbb{R}^n, n\geq2$, can uniquely determine, in a nonlinear magnetic Schrödinger equation, the vector-valued magnetic potential and the scalar electric potential, both being nonlinear in the solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源