论文标题
真正的高维量子转向
Genuine high-dimensional quantum steering
论文作者
论文摘要
与量子系统相比,高维量子纠缠可以引起更强的非局部相关形式,从而为量子信息处理提供了显着的优势。但是,认证这些更强的相关性仍然是一个重要的挑战,尤其是在实验环境中。在这里,我们从理论上正式化并在实验上证明了真正的高维量子转向的概念。我们表明,由施密特数量量化的高维纠缠可以导致更强的转向形式,这证明是不可能通过较低维度通过纠缠获得的。利用量子测量结果的转向与不兼容之间的联系,我们得出了简单的两设备转向不平等,违规行为可以保证存在真正的高维转向,因此在单侧独立的设备环境中对Schmidt数字进行了认证。我们报告了使用宏像素光子对纠缠对这些不平等现象的实验性侵犯,并证明了真正的高维转向。特别是,使用尺寸$ d = 31 $的纠缠状态,我们的数据证明了最低schmidt $ n = 15 $。
High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems, offering significant advantages for quantum information processing. Certifying these stronger correlations, however, remains an important challenge, in particular in an experimental setting. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum steering. We show that high-dimensional entanglement, as quantified by the Schmidt number, can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive simple two-setting steering inequalities, the violation of which guarantees the presence of genuine high-dimensional steering, and hence certifies a lower bound on the Schmidt number in a one-sided device-independent setting. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering. In particular, using an entangled state in dimension $d=31$, our data certifies a minimum Schmidt number of $n=15$.