论文标题

消除灾难性干扰有偏见的竞争

Eliminating Catastrophic Interference with Biased Competition

论文作者

Pollard, Amelia Elizabeth, Shapiro, Jonathan L.

论文摘要

我们在这里提出了一个模型,通过学习通过偏向网络中的竞争交互来分离任务和子任务,以利用复杂数据集的多任务性质。此方法不需要数据集中数据的其他标签或重新标记。我们提出了对多任务问题的单层一任务处理的替代观点,并描述了基于Desimone提出的神经科学的神经元注意理论的模型。我们根据MNIST数据集创建并展示了一个新的玩具数据集(我们称之为MNIST-QA),用于测试视觉问题,以在低维环境中回答架构,同时保留视觉问题答案任务的更加困难的组件,并在此新数据集中以及在coco-qa-qa-qa和dauquar-full上证明拟议的网络体系结构。然后,我们证明该模型消除了新创建的玩具数据集上的任务之间的灾难性干扰,并在视觉问题回答空间中提供了竞争成果。我们提供了进一步的证据,表明可以将视觉问题回答作为一个多任务问题,并证明基于偏见的竞争模型的这种新体系结构能够学习以端到端的方式分离和学习任务,而无需任务标签。

We present here a model to take advantage of the multi-task nature of complex datasets by learning to separate tasks and subtasks in and end to end manner by biasing competitive interactions in the network. This method does not require additional labelling or reformatting of data in a dataset. We propose an alternate view to the monolithic one-task-fits-all learning of multi-task problems, and describe a model based on a theory of neuronal attention from neuroscience, proposed by Desimone. We create and exhibit a new toy dataset, based on the MNIST dataset, which we call MNIST-QA, for testing Visual Question Answering architectures in a low-dimensional environment while preserving the more difficult components of the Visual Question Answering task, and demonstrate the proposed network architecture on this new dataset, as well as on COCO-QA and DAQUAR-FULL. We then demonstrate that this model eliminates catastrophic interference between tasks on a newly created toy dataset and provides competitive results in the Visual Question Answering space. We provide further evidence that Visual Question Answering can be approached as a multi-task problem, and demonstrate that this new architecture based on the Biased Competition model is capable of learning to separate and learn the tasks in an end-to-end fashion without the need for task labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源