论文标题

用于大规模材料转移的指导微调

Guided Fine-Tuning for Large-Scale Material Transfer

论文作者

Deschaintre, Valentin, Drettakis, George, Bousseau, Adrien

论文摘要

我们提出了一种将一个或几个示例SVBRDF的外观传递到代表相似材料的目标图像的方法。我们的解决方案非常简单:我们在提供的示例上微调了一个深层的外观捕捉网络,因此它学会了从目标图像中提取类似的SVBRDF值。我们介绍了两个新型的材料捕获和设计工作流,这些材料捕获和设计了这种简单方法的强度。我们的第一个工作流程允许仅从几张图片中产生合理的大规模对象的SVBRDF。具体来说,用户只需要一张大表面和一些特写闪光图片的照片。我们使用现有方法从特写镜头提取SVBRDF参数,以及我们将这些参数传递到整个表面的方法,从而可以轻巧捕获几米宽的表面,例如壁画,地板和家具。在我们的第二个工作流程中,我们通过转移现有的,预先设计的SVBRDF的外观来为用户提供一种从Internet图片创建大型SVBRDF的强大方法。通过选择不同的示例,用户可以控制分配给目标图像的材料,从而大大增强了深度外观捕获所提供的创意可能性。

We present a method to transfer the appearance of one or a few exemplar SVBRDFs to a target image representing similar materials. Our solution is extremely simple: we fine-tune a deep appearance-capture network on the provided exemplars, such that it learns to extract similar SVBRDF values from the target image. We introduce two novel material capture and design workflows that demonstrate the strength of this simple approach. Our first workflow allows to produce plausible SVBRDFs of large-scale objects from only a few pictures. Specifically, users only need take a single picture of a large surface and a few close-up flash pictures of some of its details. We use existing methods to extract SVBRDF parameters from the close-ups, and our method to transfer these parameters to the entire surface, enabling the lightweight capture of surfaces several meters wide such as murals, floors and furniture. In our second workflow, we provide a powerful way for users to create large SVBRDFs from internet pictures by transferring the appearance of existing, pre-designed SVBRDFs. By selecting different exemplars, users can control the materials assigned to the target image, greatly enhancing the creative possibilities offered by deep appearance capture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源