论文标题

使用时空图神经网络检查COVID-19预测

Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks

论文作者

Kapoor, Amol, Ben, Xue, Liu, Luyang, Perozzi, Bryan, Barnes, Matt, Blais, Martin, O'Banion, Shawn

论文摘要

在这项工作中,我们研究了使用图形神经网络和移动性数据的COVID-19案例预测的一种新颖的预测方法。与现有的时间序列预测模型相反,所提出的方法从单个大型时空图中学习,其中节点代表区域级的人类迁移率,空间边缘代表基于人类移动的区域间连接性,而时间边缘代表节点特征。我们在美国县级别的COVID-19数据集上评估了这种方法,并证明图神经网络利用的丰富空间和时间信息使该模型可以学习复杂的动态。与表现最好的基线模型相比,我们显示RMSLE的6%降低6%,并且绝对的Pearson相关性从0.9978提高到0.998。这种新颖的信息来源与基于图的深度学习方法相结合可以是了解Covid-19的传播和演变的强大工具。我们鼓励其他人进一步开发一种基于GNN和高分辨率迁移率数据的传染病的新型建模范式。

In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data. In contrast to existing time series forecasting models, the proposed approach learns from a single large-scale spatio-temporal graph, where nodes represent the region-level human mobility, spatial edges represent the human mobility based inter-region connectivity, and temporal edges represent node features through time. We evaluate this approach on the US county level COVID-19 dataset, and demonstrate that the rich spatial and temporal information leveraged by the graph neural network allows the model to learn complex dynamics. We show a 6% reduction of RMSLE and an absolute Pearson Correlation improvement from 0.9978 to 0.998 compared to the best performing baseline models. This novel source of information combined with graph based deep learning approaches can be a powerful tool to understand the spread and evolution of COVID-19. We encourage others to further develop a novel modeling paradigm for infectious disease based on GNNs and high resolution mobility data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源