论文标题
来自光谱观测的M51中H II区域的物理特性
Physical Properties of H II Regions in M51 from Spectroscopic Observations
论文作者
论文摘要
M51和NGC 5195是一个相互作用的系统,可以通过基于地面的望远镜进行详细探讨。使用中国科学院国家天文天文台的2.16 m望远镜和6.5 m的多个镜像望远镜观察到了M51中的H II区域,其空间分辨率低于$ \ sim100 $。我们在整个星系中总共获得了113个光谱,并结合了Croxall等人的文献数据。得出一系列的物理特性,包括气相灭绝,恒星人口年龄,恒星形成率(SFR)表面密度和氧丰度。研究了这些性质的空间分布和径向谱,以研究M51的特征以及该星系的形成和演变的线索。 M51表示轻度径向灭绝梯度。与南臂相比,北螺旋臂的较低气相灭绝可能是由于过去与NGC 5195的同伴星系相遇引起的。许多H II区域的年龄在50至500 MYR之间,与文献中的模拟中最近的相互作用历史一致。 SFR表面密度呈现出温和的径向梯度,该梯度在螺旋星系中无处不在。磁盘区域中的负金属梯度为$ -0.08 $ dex $ r_ {e}^{ - 1} $,在许多螺旋星系中也常见。它得到了星系组的“内而外”场景的支持。我们在内部区域中发现0.26 dex $ r_ {e}^{ - 1} $的正丰度梯度为0.26。有可能导致阳性梯度的原因,包括由于凸起的恒星形成淬火而导致化学富集的冻结,由于假卵生长和/或银河相互作用而引起的气体中心和稀释。
M51 and NGC 5195 is an interacting system that can be explored in great details with ground-based telescopes. The H II regions in M51 were observed using the 2.16 m telescope of the National Astronomical Observatories of the Chinese Academy of Sciences and the 6.5 m Multiple Mirror Telescope with spatial resolution of less than $\sim100$ pc. We obtain a total of 113 spectra across the galaxy and combine the literature data of Croxall et al. to derive a series of physical properties, including the gas-phase extinction, stellar population age, star formation rate (SFR) surface density, and oxygen abundance. The spatial distributions and radial profiles of these properties are investigated in order to study the characteristics of M51 and the clues to the formation and evolution of this galaxy. M51 presents a mild radial extinction gradient. The lower gas-phase extinction in the north spiral arms compared to the south arms are possibly caused by the past encounters with the companion galaxy of NGC 5195. A number of H II regions have the stellar age between 50 and 500 Myr, consistent with the recent interaction history by simulations in the literatures. The SFR surface density presents a mild radial gradient, which is ubiquitous in spiral galaxies. There is a negative metallicity gradient of $-0.08$ dex $R_{e}^{-1}$ in the disk region, which is also commonly found in many spiral galaxies. It is supported by the "inside-out" scenario of galaxy formation. We find a positive abundance gradient of 0.26 dex $R_{e}^{-1}$ in the inner region. There are possible reasons causing the positive gradient, including the freezing of the chemical enrichment due to the star-forming quenching in the bulge and the gas infall and dilution due to the pseudobulge growth and/or galactic interaction.