论文标题
gromov-witten K3表面的理论和雅各比形式的kaneko-zagier方程
Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms
论文作者
论文摘要
我们证明了对于雅各比形式的kaneko-zagier微分方程的类似物的准雅各比的存在。雅各比组下的解决方案的转换特性得出了。解决方案的一个特殊特征是索引参数的多项式依赖性。结果对Gromov的所有双重分支周期积分产生了明确的猜想描述 - K3表面的理论。
We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko--Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov--Witten theory of K3 surfaces.