论文标题

隐藏的对称代数和可巩固系统的二次代数的构建

Hidden symmetry algebra and construction of quadratic algebras of superintegrable systems

论文作者

Campoamor-Stursberg, Rutwig, Marquette, Ian

论文摘要

从纯粹的代数方式中重新检查了在可溶剂系统的上下文中使用的隐藏对称代数的概念,分析了产生有限维二次二次代数的通勤多项式的子空间。通过构造,这些代数不取决于基础谎言代数的矢量场的选择,从而允许提出一种将多项式代数分析的程序作为包围代数中的子空间,该代数与给定代数的汉密尔顿通勤。

The notion of hidden symmetry algebra used in the context of exactly solvable systems is re-examined from the purely algebraic way, analyzing subspaces of commuting polynomials that generate finite-dimensional quadratic algebras. By construction, these algebras do not depend on the choice of realizations by vector fields of the underlying Lie algebra, allowing to propose a procedure to analyze polynomial algebras as those subspaces in an enveloping algebra that commute with a given algebraic Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源