论文标题
对超低频引力波的限制与脉冲星旋转率的统计数据II:Mann-Whitney U检验
Constraints on ultra-low-frequency gravitational waves with statistics of pulsar spin-down rates II: Mann-Whitney U test
论文作者
论文摘要
我们研究了具有子纳诺兹频率的引力波($ 10^{-11} $ Hz $ \ Lessim f _ {\ rm Gw} \ Lessim 10^{ - 9} $ Hz)从Milli-Second脉冲的旋转率的空间分布中。正如我们在Yonemaru等人中所建议的。 2018年,来自单个来源的重力波会导致观察到的脉冲星旋转速率的偏置,这取决于源和脉冲星之间的相对方向。为了改善对我们先前工作中重力波振幅的时间派生的约束(Kumamoto等人,2019年),我们采用了一种更复杂的统计方法,称为Mann-Whitney U检验。将我们的方法应用于ATNF PULSAR目录,我们首先发现当前数据集与天空中任何方向的GW信号一致。然后,我们通过研究测试统计量的概率分布来估计我们方法的有效角度分辨率为$(66〜 {\ rm deg})^2 $。最后,我们研究了来自银河中心和M87的重力波信号,并将模拟模拟数据集与真实的Pulsar数据进行比较,我们在时间衍生物上以$ \ dot {h} _ {\ rm gc} _ {\ rm gc} <8.9 \ 8.9 \ times 10^{ - 19} { - 19} { - 19} {\ rm s} {\ rm s}^$ 1} $ \ dot {h} _ {\ rm m87} <3.3 \ times 10^{ - 19} {\ rm s}^{ - 1} $ for M87,它们比Kumamoto等人获得的强度要强。 2019年分别为7和25。
We investigate gravitational waves with sub-nanoHz frequencies ($10^{-11}$ Hz $\lesssim f_{\rm GW} \lesssim 10^{-9}$ Hz) from the spatial distribution of the spin-down rates of milli-second pulsars. As we suggested in Yonemaru et al. 2018, gravitational waves from a single source induces the bias in the observed spin-down rates of pulsars depending on the relative direction between the source and pulsar. To improve the constraints on the time derivative of gravitational-wave amplitude obtained in our previous work (Kumamoto et al. 2019), we adopt a more sophisticated statistical method called the Mann-Whitney U test. Applying our method to the ATNF pulsar catalogue, we first found that the current data set is consistent with no GW signal from any direction in the sky. Then, we estimate the effective angular resolution of our method to be $(66~{\rm deg})^2$ by studying the probability distribution of the test statistic. Finally, we investigate gravitational-wave signal from the Galactic Centre and M87 and, comparing simulated mock data sets with the real pulsar data, we obtain the upper bounds on the time derivative as $\dot{h}_{\rm GC} < 8.9 \times 10^{-19} {\rm s}^{-1}$ for the Galactic Centre and $\dot{h}_{\rm M87} < 3.3 \times 10^{-19} {\rm s}^{-1}$ for M87, which are stronger than the ones obtained in Kumamoto et al. 2019 by factors of 7 and 25, respectively.