论文标题
翻译流的扭曲的共同体方程
Twisted cohomological equations for translation flows
论文作者
论文摘要
我们通过谐波分析的方法证明了对翻译表面上扭曲的共同体方程的存在的结果,而Sobolev空间中最多3+的衍生物损失。结果,我们证明产品翻译在(3维)翻译歧管上流动,这些歧管是(较高属)翻译表面的产物,其(平坦)圆圈在A. katok的意义上是稳定的。反过来,我们对产品流的结果意味着翻译表面翻译流的时间τ图的稳定性结果。
We prove by methods of harmonic analysis a result on existence of solutions for twisted cohomological equations on translation surfaces with loss of derivatives at most 3+ in Sobolev spaces. As a consequence we prove that product translation flows on (3-dimensional) translation manifolds which are products of a (higher genus) translation surface with a (flat) circle are stable in the sense of A. Katok. In turn, our result on product flows implies a stability result of time-τ maps of translation flows on translation surfaces.