论文标题
几何条件,具有分数和谐波schrödinger方程的确切可控性
Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations
论文作者
论文摘要
我们提供了必要且充分的几何条件,以确保一维小数和分数谐波schrödinger方程的确切可控性。对于logvinenko-sereda定理及其由kovrijkine建立的定量版本得出的必要和足够的条件,可实现分数schrödinger方程的确切可控性,而kovrijkine建立的定量版本则是由小数谐波schrödinger方程的确切可控性从无限的降级版本中的hautus anders ander ander anders anders anders ander anders anderer组成。
We provide necessary and sufficient geometric conditions for the exact controllability of the one-dimensional fractional free and fractional harmonic Schrödinger equations. The necessary and sufficient condition for the exact controllability of fractional free Schrödinger equations is derived from the Logvinenko-Sereda theorem and its quantitative version established by Kovrijkine, whereas the one for the exact controllability of fractional harmonic Schrödinger equations is deduced from an infinite dimensional version of the Hautus test for Hermite functions and the Plancherel-Rotach formula.