论文标题
用CMB,PTA和激光干涉仪测量原始重力波的光谱
Measuring the spectrum of primordial gravitational waves with CMB, PTA and Laser Interferometers
论文作者
论文摘要
我们使用宇宙微波背景(CMB),PULSAR正时阵列(PTA)以及激光和原子质干涉仪研究了21年频率的原始引力波(GW)信号的可能性。对于CMB和PTA实验,我们分别考虑了Litebird Mission和Square Kilome阵列(SKA)。 For the interferometers we consider space mission proposals including the Laser Interferometer Space Antenna (LISA), the Big Bang Observer (BBO), the Deci-hertz Interferometer Gravitational wave Observatory (DECIGO), the $μ$Ares experiment, the Decihertz Observatory (DO), and the Atomic Experiment for Dark Matter and Gravity Exploration in Space (AEDGE), as well as the ground-based Einstein望远镜(ET)提案。我们实施了计算CMB和干涉仪敏感性所需的数学,并从第一原理中得出后者的响应函数。我们还评估了每个实验中天体物理前景污染的影响。我们在能量密度参数上介绍了固定的敏感性曲线和误差线,$ω_{gw} h^2 $,是两个代表性的模型的频率,用于原始GW的随机背景的两个代表性类别:量子真空的量子真空波动,来自单场慢速通胀的指标,模型,以及源诱导的persor the Spectator the Spectator the Spectator the Spectator(2)。我们发现CMB和太空传播干涉仪任务建议对GW频谱的联合测量的前景很棒。
We investigate the possibility of measuring the primordial gravitational wave (GW) signal across 21 decades in frequencies, using the cosmic microwave background (CMB), pulsar timing arrays (PTA), and laser and atomic interferometers. For the CMB and PTA experiments we consider the LiteBIRD mission and the Square Kilometer Array (SKA), respectively. For the interferometers we consider space mission proposals including the Laser Interferometer Space Antenna (LISA), the Big Bang Observer (BBO), the Deci-hertz Interferometer Gravitational wave Observatory (DECIGO), the $μ$Ares experiment, the Decihertz Observatory (DO), and the Atomic Experiment for Dark Matter and Gravity Exploration in Space (AEDGE), as well as the ground-based Einstein Telescope (ET) proposal. We implement the mathematics needed to compute sensitivities for both CMB and interferometers, and derive the response functions for the latter from the first principles. We also evaluate the effect of the astrophysical foreground contamination in each experiment. We present binned sensitivity curves and error bars on the energy density parameter, $Ω_{GW}h^2$, as a function of frequency for two representative classes of models for the stochastic background of primordial GW: the quantum vacuum fluctuation in the metric from single-field slow-roll inflation, and the source-induced tensor perturbation from the spectator axion-SU(2) inflation models. We find excellent prospects for joint measurements of the GW spectrum by CMB and space-borne interferometers mission proposals.