论文标题

社交媒体分析云中有关危机信息学的分析

Social Media Analysis for Crisis Informatics in the Cloud

论文作者

Saez, Gerard Casas

论文摘要

灾难事件的社交媒体分析是危机信息学研究中的关键任务。它涉及分析在自然灾害,危机事件或其他大规模收敛事件中产生的社交媒体数据。由于这些事件期间生成的大数据集,因此需要设计大型软件基础架构来及时分析数据。创建这样的基础设施带来了维持它们的需求,随着这些基础设施的增长和年龄的增长,这变得更加困难。维护成本很高,因为需要快速处理查询,这需要大量计算资源每周7天,每天24小时可按需使用。在本论文中,我描述了一种设计软件基础架构的替代方法,用于分析云上的非结构化数据,同时提供快速查询以及危机信息学研究所需的可靠性。此外,我讨论了使用容器精心策划的系统进行更可靠的Twitter流收集的新方法。我最终将这种新基础架构与现有的危机信息软件基础架构进行了比较,并将其可靠性,可扩展性和可扩展性与我的方法和原型进行了比较。

Social media analysis of disaster events is a critical task in crisis informatics research. It involves analyzing social media data generated during natural disasters, crisis events, or other mass convergence events. Due to the large data sets generated during these events, large scale software infrastructures need to be designed to analyze the data in a timely manner. Creating such infrastructures bring the need to maintain them and this becomes more difficult as these infrastructures grow larger and older. Maintenance costs are high since there is a need for queries to be handled quickly which require large amounts of computational resources to be available on demand 24 hours a day, seven days a week. In this thesis, I describe an alternative approach to designing a software infrastructure for analyzing unstructured data on the cloud while providing fast queries and with the reliability needed for crisis informatics research. Additionally, I discuss a new approach for a more reliable Twitter stream collection using container orchestrated systems. I finally compare this new infrastructure with existing crisis informatics software infrastructures and compare their reliability, scalability and extensibility with my approach and my prototype.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源