论文标题
MOG-VQE:多物理遗传变异量子本质量
MoG-VQE: Multiobjective genetic variational quantum eigensolver
论文作者
论文摘要
变性量子本质量(VQE)是近期量子计算机的第一种实用算法。它的成功在很大程度上依赖于所选的变异ansatz,对应于准备哈密顿量的近似地面状态的量子电路。通常,它要么旨在达到高表示准确性(以电路深度为代价),要么使用浅层电路牺牲收敛到精确的基态能量。在这里,我们提出了可以将低深度和提高精度结合起来的方法,并利用遗传改良的ANSATZ来实现硬件有效的VQE。我们的解决方案,多物原始遗传变异量子本质量(MOG-VQE),依赖于多目标帕累托优化,其中使用非主导分类遗传算法(NSGA-II)优化了变异ANSATZ的拓扑。对于每个电路拓扑,我们使用协方差矩阵适应进化策略(CMA-ES)优化单量旋转的角度 - 一种无衍生的方法,已知,可用于嘈杂的黑盒优化。我们的协议允许准备在获得的能量精度和两倍门的数量方面同时提供高性能的电路,从而试图达到帕累托最佳的解决方案。对各种分子(H $ _2 $,H $ _4 $,H $ _6 $,BEH $ _2 $,LIH)进行了测试,我们观察到与标准硬件有效的ANSATZ相比,我们观察到了将近十倍的距离。对于12季度的Lih Hamiltonian,这允许在12个CNOT处达到化学精度。因此,该算法应导致近期设备的基态忠诚度的显着增长。
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of a Hamiltonian. Typically, it either aims to achieve high representation accuracy (at the expense of circuit depth), or uses a shallow circuit sacrificing the convergence to the exact ground state energy. Here, we propose the approach which can combine both low depth and improved precision, capitalizing on a genetically-improved ansatz for hardware-efficient VQE. Our solution, the multiobjective genetic variational quantum eigensolver (MoG-VQE), relies on multiobjective Pareto optimization, where topology of the variational ansatz is optimized using the non-dominated sorting genetic algorithm (NSGA-II). For each circuit topology, we optimize angles of single-qubit rotations using covariance matrix adaptation evolution strategy (CMA-ES) -- a derivative-free approach known to perform well for noisy black-box optimization. Our protocol allows preparing circuits that simultaneously offer high performance in terms of obtained energy precision and the number of two-qubit gates, thus trying to reach Pareto-optimal solutions. Tested for various molecules (H$_2$, H$_4$, H$_6$, BeH$_2$, LiH), we observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz. For 12-qubit LiH Hamiltonian this allows reaching chemical precision already at 12 CNOTs. Consequently, the algorithm shall lead to significant growth of the ground state fidelity for near-term devices.