论文标题

$ s $ - $ t $路径,步道和步行的安全性

Safety in $s$-$t$ Paths, Trails and Walks

论文作者

Cairo, Massimo, Khan, Shahbaz, Rizzi, Romeo, Schmidt, Sebastian, Tomescu, Alexandru I.

论文摘要

鉴于有向图$ g $和一对节点$ s $和$ t $,$ g $的a \ emph {$ s $ - $ t $ bridge}是一个边缘,其删除破坏了$ g $的所有$ s $ t $路径(因此出现在所有$ s $ t $ paths中)。计算$ g $的所有$ s $ - $ t $ bridges是一个基本的图形问题,可以在线性时间内解决。 在本文中,我们考虑了生物信息学的“安全”概念的自然概括。我们说,相对于$ s $ s $ - $ t $ walks的$ \ mathcal {w} $,如果$ w $是$ w $是$ \ mathcal {w} $的所有步行子,则是$ w $ \ emph {safe}。我们首先考虑$ \ Mathcal {w} $组成时的最大安全步行,所有$ S $ - $ t $路径,所有$ s $ - $ t $ trails,或所有$ s $ t $ t $ t $ t $ g $。我们表明,前两个问题是查找所有$ s $ -t $ bridges的直接线性概括,而第三个问题则更多地参与其中。特别是,我们表明存在可在线性时间计算的紧凑表示形式,该表示允许在其长度上输出所有最大安全步行。 我们通过假设仅针对\ emph {可见}边的子集定义安全性来进一步概括这些问题。在这里,我们证明了$ S $ - $ T $ PATHS与$ S $ - $ T $ TRAILS CASE和$ S $ - $ T $ WALKS案件之间的二分法:前两个是NP-HARD,而后者则具有与所有边缘可见时相同的复杂性。我们还表明,对于\ emph {$ s $ - $ t $表达点的类似概括}的类似概括}(节点出现在所有$ s $ - $ t $ paths中)。 因此,我们获得了这两个基本图问题的自然“安全”一代化的最佳结果。此外,我们的算法很简单,并且不采用任何复杂的数据结构,因此非常适合在实践中使用。

Given a directed graph $G$ and a pair of nodes $s$ and $t$, an \emph{$s$-$t$ bridge} of $G$ is an edge whose removal breaks all $s$-$t$ paths of $G$ (and thus appears in all $s$-$t$ paths). Computing all $s$-$t$ bridges of $G$ is a basic graph problem, solvable in linear time. In this paper, we consider a natural generalisation of this problem, with the notion of "safety" from bioinformatics. We say that a walk $W$ is \emph{safe} with respect to a set $\mathcal{W}$ of $s$-$t$ walks, if $W$ is a subwalk of all walks in $\mathcal{W}$. We start by considering the maximal safe walks when $\mathcal{W}$ consists of: all $s$-$t$ paths, all $s$-$t$ trails, or all $s$-$t$ walks of $G$. We show that the first two problems are immediate linear-time generalisations of finding all $s$-$t$ bridges, while the third problem is more involved. In particular, we show that there exists a compact representation computable in linear time, that allows outputting all maximal safe walks in time linear in their length. We further generalise these problems, by assuming that safety is defined only with respect to a subset of \emph{visible} edges. Here we prove a dichotomy between the $s$-$t$ paths and $s$-$t$ trails cases, and the $s$-$t$ walks case: the former two are NP-hard, while the latter is solvable with the same complexity as when all edges are visible. We also show that the same complexity results hold for the analogous generalisations of \emph{$s$-$t$ articulation points} (nodes appearing in all $s$-$t$ paths). We thus obtain the best possible results for natural "safety"-generalisations of these two fundamental graph problems. Moreover, our algorithms are simple and do not employ any complex data structures, making them ideal for use in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源