论文标题

基于图形神经网络的粗粒映射预测

Graph Neural Network Based Coarse-Grained Mapping Prediction

论文作者

Li, Zhiheng, Wellawatte, Geemi P., Chakraborty, Maghesree, Gandhi, Heta A., Xu, Chenliang, White, Andrew D.

论文摘要

粗粒(CG)映射算子的选择是CG分子动力学(MD)模拟的关键步骤。这仍然是一个关于什么最佳选择,并且需要理论的悬而未决的问题。当前的最新方法是绘制由专家手动选择的操作员。在这项工作中,我们通过将此问题视为监督学习来展示一种自动化方法,我们试图在其中重现专家生产的映射操作员。我们提出了一个基于图形神经网络的CG映射预测器,称为深度监督图分区模型(DSGPM),该模型将映射运算符视为图形分割问题。 DSGPM在新型数据集的人类通知映射(HAM)上进行了培训,该映射(HAM)由1,206个分子和专家注释的映射操作员组成。火腿可用于促进该领域的进一步研究。我们的模型使用一个新颖的度量学习目标来产生用于光谱聚类中的高质量原子特征。结果表明,DSGPM在图形分割领域的最先进方法优于最先进的方法。最后,我们发现预测的CG映射操作员确实在模拟中使用了良好的CG MD模型。

The selection of coarse-grained (CG) mapping operators is a critical step for CG molecular dynamics (MD) simulation. It is still an open question about what is optimal for this choice and there is a need for theory. The current state-of-the art method is mapping operators manually selected by experts. In this work, we demonstrate an automated approach by viewing this problem as supervised learning where we seek to reproduce the mapping operators produced by experts. We present a graph neural network based CG mapping predictor called DEEP SUPERVISED GRAPH PARTITIONING MODEL(DSGPM) that treats mapping operators as a graph segmentation problem. DSGPM is trained on a novel dataset, Human-annotated Mappings (HAM), consisting of 1,206 molecules with expert annotated mapping operators. HAM can be used to facilitate further research in this area. Our model uses a novel metric learning objective to produce high-quality atomic features that are used in spectral clustering. The results show that the DSGPM outperforms state-of-the-art methods in the field of graph segmentation. Finally, we find that predicted CG mapping operators indeed result in good CG MD models when used in simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源