论文标题

调查晶体和加泰罗尼亚函数的Schur积极性

Demazure crystals and the Schur positivity of Catalan functions

论文作者

Blasiak, Jonah, Morse, Jennifer, Pun, Anna

论文摘要

加泰罗尼亚函数是标志品种某些矢量束的分级欧拉(Euler)特性,是一类丰富的对称函数,其中包括$ k $ -schur函数和抛物线Hall-Littlewood多项式。我们证明,通过分区权重索引的加泰罗尼亚功能是$ u_q(\ wideHat {\ mathfrak {\ mathfrak {sl}} _ \ ell)$ - 普遍化的蛋白酶晶体,如Lakshmibai-Littelmann-Magyar和Naoi所研究的。我们获得了这些功能的Schur阳性公式,定居于Chen-Haiman和Shimozono-Weyman的猜想。我们的方法通常通过将它们与普遍的氮杂晶体的特征匹配,从而为某些矢量束的分级欧拉特征提供了关键的正式。

Catalan functions, the graded Euler characteristics of certain vector bundles on the flag variety, are a rich class of symmetric functions which include $k$-Schur functions and parabolic Hall-Littlewood polynomials. We prove that Catalan functions indexed by partition weight are the characters of $U_q(\widehat{\mathfrak{sl}}_\ell)$-generalized Demazure crystals as studied by Lakshmibai-Littelmann-Magyar and Naoi. We obtain Schur positive formulas for these functions, settling conjectures of Chen-Haiman and Shimozono-Weyman. Our approach more generally gives key positive formulas for graded Euler characteristics of certain vector bundles on Schubert varieties by matching them to characters of generalized Demazure crystals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源