论文标题
使用固有的bézier花键在流形上进行非线性回归以进行形状分析
Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic Bézier Splines
论文作者
论文摘要
对于歧管值数据(例如图像和形状)的统计分析,内在和参数回归模型具有很高的兴趣。标准线性ANSATZ已被推广到歧管上的大地回归,从而可以分析沿着广义直线扩散的随机变量的依赖性。然而,在某些情况下,数据的演变不能用大地测量进行充分建模。我们通过考虑riemannian花样的段是bézier曲线作为轨迹,提出了一种非线性回归的框架。与需要时间差异化的变异配方不同,我们采用一种建设性的方法,该方法通过广义的De Casteljau算法提供有效而精确的评估。我们在实验中验证了二尖瓣周期性运动的重建方法,以及在骨关节炎过程中股形变化的分析,从而认可Bézier样条回归,这是一种有效且灵活的工具,以进行多种可测量的回归。
Intrinsic and parametric regression models are of high interest for the statistical analysis of manifold-valued data such as images and shapes. The standard linear ansatz has been generalized to geodesic regression on manifolds making it possible to analyze dependencies of random variables that spread along generalized straight lines. Nevertheless, in some scenarios, the evolution of the data cannot be modeled adequately by a geodesic. We present a framework for nonlinear regression on manifolds by considering Riemannian splines, whose segments are Bézier curves, as trajectories. Unlike variational formulations that require time-discretization, we take a constructive approach that provides efficient and exact evaluation by virtue of the generalized de Casteljau algorithm. We validate our method in experiments on the reconstruction of periodic motion of the mitral valve as well as the analysis of femoral shape changes during the course of osteoarthritis, endorsing Bézier spline regression as an effective and flexible tool for manifold-valued regression.