论文标题
用元电路计算模拟计算
Analog Computing with Metatronic Circuits
论文作者
论文摘要
模拟光子解决方案提供了独特的机会,可以在能量耗散和速度方面以前所未有的性能解决复杂的计算任务,克服基于电子流和数字方法的现代计算体系结构的当前局限性。光子学中缺乏模块化和集体元件可重构性阻止了向全光模拟计算平台的过渡。在这里,我们探索了一个基于能够在模拟域部分微分方程(PDE)中求解的基于Epsilon-Near-Zero材料的纳米光子平台。零索引中的波长拉伸基于电位移的传导,可以在板内高度非局部相互作用,可以对其进行监测以提取广泛的PDE问题的解决方案。通过通过过程参数利用对沉积技术的控制,我们证明了使用CMOS兼容的依赖二键蛋白氧化物实现所提出的纳米光学处理器的可能性,其光学特性可以通过载体注入来调整以在高速速度和低能要求下获得可编程性。我们的纳米光学模拟处理器可以集成在芯片尺度上,以光速处理任意输入。
Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, which can be monitored to extract the solution of a broad class of PDE problems. By exploiting control of deposition technique through process parameters, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.