论文标题
整数中分形集的添加剂和几何横向
Additive and geometric transversality of fractal sets in the integers
论文作者
论文摘要
通过将分形几何形状和动力学系统的思想置,弗斯滕伯格在1960年代后期提出了一系列猜想,探讨了数字扩展相对于乘务独立的基础的关系。在这项工作中,我们介绍和研究 - 在整数的离散背景下 - 围绕Furstenberg工作的一些概念和结果的类似物。特别是,我们定义了一类新的整数组集,它们与1个螺旋桨上的$ \ times r $ invariant集合相同,并研究两个这样的分形集之间的添加剂和几何独立性相对于乘数独立碱。我们的主要结果与Furstenberg,Hochman-Shmerky,Shmerkin,Wu和Lindenstrauss-Meiri-Peres的作品相似,并包括: - 同时$ \ times r $ - 和$ \ times s $ invariant的正整数的所有子集的分类; - 弗斯滕伯格的两个横向性猜想中的两个类似物,与交叉点$ a \ cap b $和$ \ times r $ $ $ \ times r $ - 和$ \ timess s $ invariant sets $ a $ a $和$ b $ r $和$ s $相关的$ a $ a $ $ \ times r $ $ \ times r $ $ a \ a \ a $ a \ b $ a $ \ times r $ - 和 - 迭代总和的尺寸的描述$ a+a+a+\ cdots+a $对于任何$ \ times r $ -invariant set $ a $。 我们通过结合分形几何形状和千古理论的思想来在连续和离散的制度之间建立桥梁来实现这些结果。对于横向性结果,我们严重依赖定量界限,对Shmerkin最近获得的限制数字cantor措施的预测限制。我们结束时概述了有关整数的分形子集的许多空旷的问题和指示。
By juxtaposing ideas from fractal geometry and dynamical systems, Furstenberg proposed a series of conjectures in the late 1960's that explore the relationship between digit expansions with respect to multiplicatively independent bases. In this work, we introduce and study - in the discrete context of the integers - analogues of some of the notions and results surrounding Furstenberg's work. In particular, we define a new class of fractal sets of integers that parallels the notion of $\times r$-invariant sets on the 1-torus and investigate the additive and geometric independence between two such fractal sets when they are structured with respect to multiplicatively independent bases. Our main results in this direction parallel the works of Furstenberg, Hochman-Shmerkin, Shmerkin, Wu, and Lindenstrauss-Meiri-Peres and include: -a classification of all subsets of the positive integers that are simultaneously $\times r$- and $\times s$-invariant; -integer analogues of two of Furstenberg's transversality conjectures pertaining to the dimensions of the intersection $A\cap B$ and the sumset $A+B$ of $\times r$- and $\times s$-invariant sets $A$ and $B$ when $r$ and $s$ are multiplicatively independent; and -a description of the dimension of iterated sumsets $A+A+\cdots+A$ for any $\times r$-invariant set $A$. We achieve these results by combining ideas from fractal geometry and ergodic theory to build a bridge between the continuous and discrete regimes. For the transversality results, we rely heavily on quantitative bounds on the $L^q$-dimensions of projections of restricted digit Cantor measures obtained recently by Shmerkin. We end by outlining a number of open questions and directions regarding fractal subsets of the integers.