论文标题

高维时间序列的社区网络自动回归

Community Network Auto-Regression for High-Dimensional Time Series

论文作者

Chen, Elynn Y., Fan, Jianqing, Zhu, Xuening

论文摘要

在大规模网络的节点上进行建模响应是在实践中通常会产生的重要任务。本文提出了一个社区网络矢量自回归(CNAR)模型,该模型利用网络结构来表征高维时间序列的依赖性和社区内同质性。 CNAR模型通过允许在不同网络社区之间的异质网络效应来大大提高网络矢量自回归(Zhu等,2017,NAR)模型的灵活性和一般性。另外,包括与非社区相关的潜在因素包括未知的横截面依赖性。随着网络的扩展,网络社区的数量可能会分歧,从而导致估计数量的模型参数数量。我们获得一组固定条件,并开发有效的两步加权最小二乘估计器。建立了估计量的一致性和渐近正态性能。理论结果表明,当误差允许因子结构时,两步估计器将一步估计器通过数量级提高一步。在各种合成数据集上进一步说明了CNAR模型的优势。

Modeling responses on the nodes of a large-scale network is an important task that arises commonly in practice. This paper proposes a community network vector autoregressive (CNAR) model, which utilizes the network structure to characterize the dependence and intra-community homogeneity of the high dimensional time series. The CNAR model greatly increases the flexibility and generality of the network vector autoregressive (Zhu et al, 2017, NAR) model by allowing heterogeneous network effects across different network communities. In addition, the non-community-related latent factors are included to account for unknown cross-sectional dependence. The number of network communities can diverge as the network expands, which leads to estimating a diverging number of model parameters. We obtain a set of stationary conditions and develop an efficient two-step weighted least-squares estimator. The consistency and asymptotic normality properties of the estimators are established. The theoretical results show that the two-step estimator improves the one-step estimator by an order of magnitude when the error admits a factor structure. The advantages of the CNAR model are further illustrated on a variety of synthetic and real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源