论文标题
反馈增强自动驾驶汽车的运动计划
Feedback Enhanced Motion Planning for Autonomous Vehicles
论文作者
论文摘要
在这项工作中,我们通过一种新的晶格计划方法解决了自动驾驶汽车的运动计划问题,称为反馈增强晶格计划者(FELP)。现有的晶格规划师有两个主要局限性,即晶格的高维度以及缺乏代理车辆行为的建模。我们建议将智能驱动程序模型(IDM)应用于速度反馈策略,以解决这两个限制。 IDM既可以实现代理的响应行为,又可以独特地确定在给定路径上自我车辆的加速度和速度曲线。因此,仅需要一个空间晶格,而不再需要高阶维度的离散化。此外,我们提出了一个定向图表的表示,以支持晶格规划师的实施和执行。该地图可以反映本地几何结构,将遵循道路的交通规则嵌入,并有效地构造和更新。我们表明,通过运行时复杂性分析,FELP与其他现有晶格计划者相比更有效,我们提出了两个FELP的变体,以进一步降低多项式时间的复杂性。我们通过使用合并场景和连续的高速公路交通的模拟将FELP与现有的时空晶格规划师进行比较来证明改进。我们还研究了在不同的交通密度下FELP的性能。
In this work, we address the motion planning problem for autonomous vehicles through a new lattice planning approach, called Feedback Enhanced Lattice Planner (FELP). Existing lattice planners have two major limitations, namely the high dimensionality of the lattice and the lack of modeling of agent vehicle behaviors. We propose to apply the Intelligent Driver Model (IDM) as a speed feedback policy to address both of these limitations. IDM both enables the responsive behavior of the agents, and uniquely determines the acceleration and speed profile of the ego vehicle on a given path. Therefore, only a spatial lattice is needed, while discretization of higher order dimensions is no longer required. Additionally, we propose a directed-graph map representation to support the implementation and execution of lattice planners. The map can reflect local geometric structure, embed the traffic rules adhering to the road, and is efficient to construct and update. We show that FELP is more efficient compared to other existing lattice planners through runtime complexity analysis, and we propose two variants of FELP to further reduce the complexity to polynomial time. We demonstrate the improvement by comparing FELP with an existing spatiotemporal lattice planner using simulations of a merging scenario and continuous highway traffic. We also study the performance of FELP under different traffic densities.