论文标题
在催化分支随机行走的最大位移
On the maximal displacement of catalytic branching random walk
论文作者
论文摘要
我们研究了在Z上的关键和亚临界催化分支随机行走的模型中,颗粒位置的最大位移的分布分布。特别是,我们证明,在Z上简单的对称随机行走的情况下,在Z上的简单对称随机行走的情况下,最大位移的分布“最大尾部具有重量的尾巴”,而在远处或1/2或1/1/2或1/1/1/1/1/1/1/1/1/1/1/1/1/这些陈述描述了在Z上关键和亚临界分支随机步行的最大位移的相应研究中没有产生的新效果。
We study the distribution of the maximal displacement of particles positions for the whole time of the population existence in the model of critical and subcritical catalytic branching random walk on Z. In particular, we prove that in the case of simple symmetric random walk on Z, the distribution of the maximal displacement has "a heavy tail" decreasing as a function of the power 1/2 or 1, when the branching process is critical or subcritical, respectively. These statements describe new effects which do not arise in the corresponding investigations of the maximal displacement of critical and subcritical branching random walks on Z.