论文标题
$ \ mathbb {1} $ - 循环理论
$\mathbb{1}$-Loop Theory
论文作者
论文摘要
开发了一种新的晶格仪理论形式主义,该理论保存在离散宇宙中的庞加莱对称性。我们定义了$ \ mathbb {1} $ - 循环,Wilson环的概括,该循环将经典运动的经典微分方程重新定义为形式$ {[g_1 \ cdots g_n] = \ mathbb {1}} $的lie组元素的身份值的乘数循环。因此,得出了一种使用新物质田间构建的重力理论,并在适当的极限内恢复了爱因斯坦的真空方程。
A new formalism for lattice gauge theory is developed that preserves Poincaré symmetry in a discrete universe. We define the $\mathbb{1}$-loop, a generalization of the Wilson loop that reformulates classical differential equations of motion as identity-valued multiplicative loops of Lie group elements of the form ${[g_1\cdots g_n]=\mathbb{1}}$. A lattice Poincaré gauge theory of gravity is thus derived that employs a novel matter field construction and recovers Einstein's vacuum equations in the appropriate limit.