论文标题

通过神经网络增强可区分的模拟器,以缩小SIM2REAL差距

Augmenting Differentiable Simulators with Neural Networks to Close the Sim2Real Gap

论文作者

Heiden, Eric, Millard, David, Coumans, Erwin, Sukhatme, Gaurav S.

论文摘要

我们为铰接的刚体动力学提供了可区分的仿真体系结构,该构图可以在计算的任何时候使用神经网络的分析模型增强。通过基于梯度的优化,对模拟参数和网络权重的识别在现实世界数据集和SIM2SIM传输应用程序上的初步实验中有效地执行,而通过随机搜索方法克服了较差的本地Optima。

We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation. Through gradient-based optimization, identification of the simulation parameters and network weights is performed efficiently in preliminary experiments on a real-world dataset and in sim2sim transfer applications, while poor local optima are overcome through a random search approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源