论文标题

通过自适应深度强化学习,对抗性攻击和防御策略

Adversarial jamming attacks and defense strategies via adaptive deep reinforcement learning

论文作者

Wang, Feng, Zhong, Chen, Gursoy, M. Cenk, Velipasalar, Senem

论文摘要

随着无线通信中深强化学习(DRL)的应用的增长,基于DRL的无线通信策略对对抗性攻击的敏感性已开始引起越来越多的关注。为了解决这种敏感性并减轻由此产生的安全问题,我们在本文中考虑了受害者用户,该用户执行基于DRL的动态渠道访问权限,而攻击者则执行DRLTLAD基于DRL的干扰攻击以破坏受害者。因此,受害者和攻击者都是DRL代理商,可以相互互动,重新培训模型并适应对手的政策。在这种情况下,我们最初制定了一种对抗性攻击政策,旨在最大程度地降低受害者对动态渠道访问的决策的准确性。随后,我们制定了针对此类攻击者的防御策略,并提出了三种防御策略,即具有比例综合衍生(PID)控制,具有模仿攻击者的多元化防御和通过正交政策的防御。我们设计了这些策略,以最大程度地提高受害者的准确性并评估他们的表现。

As the applications of deep reinforcement learning (DRL) in wireless communications grow, sensitivity of DRL based wireless communication strategies against adversarial attacks has started to draw increasing attention. In order to address such sensitivity and alleviate the resulting security concerns, we in this paper consider a victim user that performs DRL-based dynamic channel access, and an attacker that executes DRLbased jamming attacks to disrupt the victim. Hence, both the victim and attacker are DRL agents and can interact with each other, retrain their models, and adapt to opponents' policies. In this setting, we initially develop an adversarial jamming attack policy that aims at minimizing the accuracy of victim's decision making on dynamic channel access. Subsequently, we devise defense strategies against such an attacker, and propose three defense strategies, namely diversified defense with proportional-integral-derivative (PID) control, diversified defense with an imitation attacker, and defense via orthogonal policies. We design these strategies to maximize the attacked victim's accuracy and evaluate their performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源