论文标题

自下而上的机制和改进的合同净协议,用于异质地球观察资源的动态任务计划

Bottom-up mechanism and improved contract net protocol for the dynamic task planning of heterogeneous Earth observation resources

论文作者

Liu, Baoju, Deng, Min, Wu, Guohua, Pei, Xinyu, Li, Haifeng, Pedrycz, Witold

论文摘要

地球观察资源在救灾,损害评估和相关领域中变得越来越有必要。许多不可预测的因素,例如观察任务要求的变化,对恶劣天气和资源失败的发生,可能会导致预定的观察方案变得不可行。因此,至关重要的是,能够及时甚至经常制定高质量的重型观察方案,以最大程度地减少对计划任务的影响。提出了一个自下而上的分布式协调框架以及改进的合同网,以促进为异质地球观测资源重建动态任务。该层次结构框架包括三个级别,即相邻的资源协调,单一计划中心协调和多个计划中心协调。分配和处理受未预测因素影响的观察任务以及从资源到计划中心的自下而上的路线。自下而上的分布式协调框架将一部分计算负载转移到观察系统的各个节点,以更有效,更稳定地分配任务。为了支持大规模任务的迅速分配到动态环境中适当的地球观察资源,我们提出了一种多型组合分配(MCA)方法。此外,提出了一种新的基于FLOAT间隔的本地搜索算法,以更快地获得有前途的计划计划。该实验表明,MCA方法可以实现以令人满意的时间效率的大规模任务实现更好的任务完成率。它还表明,此方法可以帮助根据动态环境中的原始方案有效地获得重型方案。

Earth observation resources are becoming increasingly indispensable in disaster relief, damage assessment and related domains. Many unpredicted factors, such as the change of observation task requirements, to the occurring of bad weather and resource failures, may cause the scheduled observation scheme to become infeasible. Therefore, it is crucial to be able to promptly and maybe frequently develop high-quality replanned observation schemes that minimize the effects on the scheduled tasks. A bottom-up distributed coordinated framework together with an improved contract net are proposed to facilitate the dynamic task replanning for heterogeneous Earth observation resources. This hierarchical framework consists of three levels, namely, neighboring resource coordination, single planning center coordination, and multiple planning center coordination. Observation tasks affected by unpredicted factors are assigned and treated along with a bottom-up route from resources to planning centers. This bottom-up distributed coordinated framework transfers part of the computing load to various nodes of the observation systems to allocate tasks more efficiently and robustly. To support the prompt assignment of large-scale tasks to proper Earth observation resources in dynamic environments, we propose a multiround combinatorial allocation (MCA) method. Moreover, a new float interval-based local search algorithm is proposed to obtain the promising planning scheme more quickly. The experiments demonstrate that the MCA method can achieve a better task completion rate for large-scale tasks with satisfactory time efficiency. It also demonstrates that this method can help to efficiently obtain replanning schemes based on original scheme in dynamic environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源