论文标题

图形线的线插件的重建

Reconstruction of Line-Embeddings of Graphons

论文作者

Janssen, Jeannette, Smith, Aaron

论文摘要

考虑一个随机的图形过程,其中$ n $顶点对应于点$ v_ {i} \ sim {unif} [0,1] $在间隔中随机嵌入,并且在$ v_ {i},v_ {j} $之间插入边缘,并独立于graphon $ w(v _} $ w(i} $} $)。遵循Chuangpishit等。 (2015年),如果对于每种$ x $,$ w(x,y)$减少,我们称graphon $ w $对角线增加,$ y $从$ x $移动。如果$ v_ {σ(i)} <v_ {σ(j)} $,我们将这些顶点的排列称为s_ {n} $ in s_ {n} $作为所有$ i <j $的订购,然后问:我们如何准确地从观察图中估算$σ$?我们提出了一种随机算法,带有输出$ \hatσ$,对于大型图形,实现错误$ \ max_ {1 \ leq i \ leq n} | σ(i) - \hatσ(i)| = o^{*}(\ sqrt {n})$具有高概率;我们还表明,这是大量算法和证明策略的最佳融合率。在某些流行的Graphon模型满足的其他假设下,我们以$ \ sqrt {n} $打破了此“障碍”,并获得了任何$ε> 0 $的$ o^{*}(n^ε)$的更高速率。这些改进的序列界限可以与先前的工作结合使用,以提供相关任务的更有效和准确的算法,包括:估计对角线增加图形,并测试Graphon是否对角线增加。

Consider a random graph process with $n$ vertices corresponding to points $v_{i} \sim {Unif}[0,1]$ embedded randomly in the interval, and where edges are inserted between $v_{i}, v_{j}$ independently with probability given by the graphon $w(v_{i},v_{j}) \in [0,1]$. Following Chuangpishit et al. (2015), we call a graphon $w$ diagonally increasing if, for each $x$, $w(x,y)$ decreases as $y$ moves away from $x$. We call a permutation $σ\in S_{n}$ an ordering of these vertices if $v_{σ(i)} < v_{σ(j)}$ for all $i < j$, and ask: how can we accurately estimate $σ$ from an observed graph? We present a randomized algorithm with output $\hatσ$ that, for a large class of graphons, achieves error $\max_{1 \leq i \leq n} | σ(i) - \hatσ(i)| = O^{*}(\sqrt{n})$ with high probability; we also show that this is the best-possible convergence rate for a large class of algorithms and proof strategies. Under an additional assumption that is satisfied by some popular graphon models, we break this "barrier" at $\sqrt{n}$ and obtain the vastly better rate $O^{*}(n^ε)$ for any $ε> 0$. These improved seriation bounds can be combined with previous work to give more efficient and accurate algorithms for related tasks, including: estimating diagonally increasing graphons, and testing whether a graphon is diagonally increasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源