论文标题

双极性Biexciton超级流体的自旋轨道耦合

Spin-orbit coupled depairing of a dipolar biexciton superfluid

论文作者

Andreev, S. V.

论文摘要

我们考虑可以形成结合对的明亮偶极激子系统中的量子相变(偶极biexcitons)。我们假设激发子与相对自旋的相互作用有狭窄的共振。在足够大的密度下,谐振激子超流体转化为biexcitons的超流体。过渡可以是第一类或第二类。对成对中激子的平均相对动量超出了光锥,应伴随着光致发光强度的降低。由于非辐射激子状态的远距离交换而引起的有效磁场引起了biexciton共振的扩展。该场将间隙在基本激发光谱中的位置转移到k空间中的简并极小圆圈。闭合新间隙定义了二阶相变为反向传播的平面波激素冷凝物的混合物,沿垂直于其波形的方向线性地偏振。在共振能量与密度相图中,新相位介入深色Biexciton和辐射激子超流体之间。我们得出的结论是,BCS样的Biexciton冷凝物的形成会诱导有效磁场和激发旋转的相关比对。我们概述了旋转轨道(SO)耦合的玻色 - 因斯坦凝结现象的新兴机制的重要差异。我们期望在所谓的费米子超流体和超导体中存在类似机制。

We consider quantum phase transitions in a system of bright dipolar excitons which can form bound pairs (dipolar biexcitons). We assume a narrow resonance in the interaction of excitons with opposite spins. At sufficiently large density a resonant exciton superfluid transforms into a superfluid of biexcitons. The transition may be either of the first or the second kind. The average relative momenta of excitons in the pairs being beyond the light cone, the transition should be accompanied by reduction of the photoluminescence intensity. Effective magnetic fields due to the long-range exchange splitting of non-radiative exciton states induce broadening of the biexciton resonance. The fields shift the position of the gap in the elementary excitation spectrum to a circle of degenerate minima in the k-space. Closing the new gap defines a second order phase transition into a mixture of counter-propagating plane-wave excitonic condensates polarized linearly in the direction perpendicular to their wavevectors. In the resonance energy vs density phase diagram the novel phase intervenes between the dark biexciton and radiative exciton superfluids. We conclude that formation of a BCS-like biexciton condensate induces correlated alignment of the effective magnetic fields and excitonic spins. We outline important differences of the emergent mechanism from the phenomenon of spin-orbit (SO) coupled Bose-Einstein condensation. We expect existence of analogous mechanisms in SO-coupled fermionic superfluids and superconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源