论文标题

深度学习分布式通道反馈和FDD中的多源预码

Deep Learning for Distributed Channel Feedback and Multiuser Precoding in FDD Massive MIMO

论文作者

Sohrabi, Foad, Attiah, Kareem M., Yu, Wei

论文摘要

本文表明,深层神经网络(DNN)可用于有效和分布式的通道估计,量化,反馈和下行链路多源预编码,用于频率划分大量的大量多输入多输入多出输出系统,其中基站(BS)为多个移动用户提供服务,但具有从用户到BS的速率限制反馈。一个关键的观察结果是,可以将多源通道估计和反馈问题视为分布式源编码问题。与传统方法相反,在每个用户中估算和量化了频道状态信息(CSI)的传统方法,本文表明,飞行员和新的DNN体系结构的联合设计将接收到的飞行员直接映射到用户端的反馈中,然后将所有用户的反馈位映射到所有用户的反馈位,可以直接改善BS的预码矩阵,可以显着改善总体表现。本文进一步提出了有关频道参数的强大设计策略,也提出了用于不同用户数量和反馈位数的可推广的DNN体系结构。数值结果表明,基于简短的试验序列和非常有限的反馈开销的基于DNN的方法已经可以接近使用完整CSI的常规线性预码方案的性能。

This paper shows that deep neural network (DNN) can be used for efficient and distributed channel estimation, quantization, feedback, and downlink multiuser precoding for a frequency-division duplex massive multiple-input multiple-output system in which a base station (BS) serves multiple mobile users, but with rate-limited feedback from the users to the BS. A key observation is that the multiuser channel estimation and feedback problem can be thought of as a distributed source coding problem. In contrast to the traditional approach where the channel state information (CSI) is estimated and quantized at each user independently, this paper shows that a joint design of pilots and a new DNN architecture, which maps the received pilots directly into feedback bits at the user side then maps the feedback bits from all the users directly into the precoding matrix at the BS, can significantly improve the overall performance. This paper further proposes robust design strategies with respect to channel parameters and also a generalizable DNN architecture for varying number of users and number of feedback bits. Numerical results show that the DNN-based approach with short pilot sequences and very limited feedback overhead can already approach the performance of conventional linear precoding schemes with full CSI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源